The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons (2024)

Vihaan Dheer
vdheer@students.hackleyschool.org
Hackley School. 293 Benedict Avenue, Tarrytown, NY 10591, USA.

Abstract

In a system of two tunable-frequency qubits, it is well-known that adiabatic tuning into strong coupling-interaction regions between the qubit subspace and the rest of the Hilbert space can be used to generate an effective controlled-Z rotation. We address the problem of determining a preferable adiabatic trajectory along which to tune the qubit frequency, and apply this to the flux-tunable transmon model. The especially minimally anharmonic nature of these quantum processors makes them good candidates for qubit control using non-computational states, as long as higher-level leakage is properly addressed. While the statement of this method has occurred multiple times in literature, there has been little discussion of which trajectories may be used. We present a generalized method for optimizing parameterized families of possible flux trajectories and provide examples of use on five test families of one and two parameters.

non-computational states, flux-tunable transmon, adiabatic, CPHASE, superconducting qubits

I Introduction

With the rapid development of quantum computation and information theory, it is not uncommon that implementation issues arise from approximations in theoretical considerations1, 2, 3. There is an ensemble of negative effects causing quantum states to decohere, including state relaxation, leakage, dephasing, and other environmental coupling factors which are often difficult to control1, 4. It is thus crucial to minimize these errors both at their source, and, if possible, after they have acted on a system. In the latter case, quantum error correction5 provides information-theoretic means for resolving these issues in certain cases, though physical correction is usually desirable. One source of error hard to mitigate is that of leakage out of the computational subspace, which is especially difficult to address on transmon superconducting qubits6. In the so-called transmon regime, anharmonicity is kept relatively small to maintain low sensitivity to charge noise in the superconducting circuit. This, however, considerably increases the probability of unwanted transitions out of the computational subspace. Much of the field’s literature treats these non-computational states as pure error; here we discuss a case in which their consideration is used to provide an advantage.

It is well-known7, 8, 9 that the use of the avoided crossing between the |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ and |2,0ket20\ket{2,0}| start_ARG 2 , 0 end_ARG ⟩ states of coupled transmons in an adiabatic fashion leads to a CZ operation, and in general any controlled phase (throughout this work, we use the definition CZ=2|1,11,1|𝐶𝑍21111CZ=\mathcal{I}-2\outerproduct{1,1}{1,1}italic_C italic_Z = caligraphic_I - 2 | start_ARG 1 , 1 end_ARG ⟩ ⟨ start_ARG 1 , 1 end_ARG |). The subject of this paper, motivated by the potential use of non-computational states in tunable transmons, is an in-depth model addressing the optimization of flux trajectories for this application. Most work on the subject explains only the possibility of this implementation, but does not specify which trajectories to use. An explicit analysis of adiabatic control waveforms was carried out by Martinis and Geller9, however this was done with a focus towards the generation of such trajectories and keeping short gate times. Though short operations are indeed important to building a successful quantum gate, here we will fix a gate time, focusing more on the reduction of leakage, which, in addition to increasing the fidelity of the gate, also improves performance of future operations in a gate sequence6.

Specifically, in a mathematically rigorous manner, after devising a functional norm on the algebra of trajectories to determine to what degree a trajectory is adiabatic without any direct quantum mechanical simulation, we analyze multiple trajectories which should theoretically implement a CZ gate. We introduce a generalized method to locate optimal trajectories in families of curves.

The structure of this paper is as follows: we first discuss our model of the two-transmon quantum processor and the theoretical underpinning for the adiabatic implementation of the controlled-Z gate in Sec. II and Sec. III. In Sec. IV and V, respectively, we present our mathematical model and subsequently define test trajectories. Lastly, we compare the action of two of these through simulation of two tunable transmons in Sec. VI and conclude by discussing possible future work in Sec. VII.

II Model & Theory

In this section, we briefly describe the model that the rest of this work is based on, which is used for both simulation and motivation of our optimization method. In addition, we review how a controlled phase gate naturally arises in the adiabatic control of the system when levels in the qutrit subspace of the transmon are considered. In our setup, two flux-tunable transmons are employed in the standard arrangement: the qubit frequency is tuned by applying magnetic flux through the symmetric split-junction (a dc-SQUID)[Fig. 1(a)]. We use simulation parameters similar to those in Ref. 10, in which Q1(Q2) has frequency ω/2π=5.889(5.031)𝜔2𝜋5.8895.031\omega/2\pi=5.889(5.031)italic_ω / 2 italic_π = 5.889 ( 5.031 ) GHz and anharmonicity α/2π=324.3(234.7)𝛼2𝜋324.3234.7\alpha/2\pi=-324.3(-234.7)italic_α / 2 italic_π = - 324.3 ( - 234.7 ) MHz, with coherence times T1=25.5(48.8)𝑇125.548.8T1=25.5(48.8)italic_T 1 = 25.5 ( 48.8 ) μ𝜇\muitalic_μs and T2=13.3(28.4)𝑇213.328.4T2=13.3(28.4)italic_T 2 = 13.3 ( 28.4 ) μ𝜇\muitalic_μs, with coupling strength between qubits g/2π=24.7𝑔2𝜋24.7g/2\pi=24.7italic_g / 2 italic_π = 24.7 MHz. Though a common choice at present for a coupling setup is cQED6, for analytical simplicity we use direct capacitive coupling between the qubits, yet the strategies presented here are generalizeable to a cQED model (such as the generalized Tavis-Cummings Hamiltonian8). In this configuration, single-qubit microwave pulses are implemented through the capacitive coupling of each transmon to a drive line controlled by an arbitrary waveform generator[Fig. 1(b)]11. The operational point for these microwave pulses occurs when there is no applied flux, i.e. φ=0𝜑0\varphi=0italic_φ = 0; at this base point, the qubit frequencies of the transmons are furthest detuned from each other, thus minimizing the effect of the coupling as a source of decoherence. Fig. 1(c) shows the explicit effect of the flux detuning on the frequency for various initial states. In the tensor product eigenbases of the individual transmons (including coupling to their own drive lines), the Hamiltonian governing the capacitive interaction is6

H=j(ω1j|jj|2+ω2j1|jj|)g(aa)2𝐻subscript𝑗tensor-productsubscriptsuperscript𝜔𝑗1𝑗𝑗subscript2tensor-productsubscriptsuperscript𝜔𝑗2subscript1𝑗𝑗𝑔superscript𝑎superscript𝑎tensor-productabsent2H=\sum_{j}{\Big{(}\omega^{j}_{1}\outerproduct{j}{j}\otimes\mathcal{I}_{2}+%\omega^{j}_{2}\mathcal{I}_{1}\otimes\outerproduct{j}{j}\Big{)}-g(a-a^{\dagger}%)^{\otimes 2}}italic_H = ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_ω start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_ARG italic_j end_ARG ⟩ ⟨ start_ARG italic_j end_ARG | ⊗ caligraphic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_ω start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT caligraphic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊗ | start_ARG italic_j end_ARG ⟩ ⟨ start_ARG italic_j end_ARG | ) - italic_g ( italic_a - italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ⊗ 2 end_POSTSUPERSCRIPT(1)

where g𝑔gitalic_g is the coupling strength between the transmons, ω1jsubscriptsuperscript𝜔𝑗1\omega^{j}_{1}italic_ω start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and ω2jsubscriptsuperscript𝜔𝑗2\omega^{j}_{2}italic_ω start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are the respective qubit frequencies of j𝑗jitalic_jth level of each transmon, isubscript𝑖\mathcal{I}_{i}caligraphic_I start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the identity operator on the Hilbert space for the i𝑖iitalic_ith transmon, and we have used the usual oscillator annihilation and creation operators a𝑎aitalic_a and asuperscript𝑎a^{\dagger}italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT. Since the coupling g/2π𝑔2𝜋g/2\piitalic_g / 2 italic_π is significantly smaller (roughly 200-fold at φ=0𝜑0\varphi=0italic_φ = 0) than the qubit frequencies, the rotating wave approximation is justified, reducing the interaction term of Eq. 1 to

Hint=g(aa+aa).subscript𝐻int𝑔tensor-product𝑎superscript𝑎tensor-productsuperscript𝑎𝑎H_{\mathrm{int}}=g(a\otimes a^{\dagger}+a^{\dagger}\otimes a).italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT = italic_g ( italic_a ⊗ italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ⊗ italic_a ) .(2)
The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons (1)

A controlled-Z gate being the application of a π𝜋\piitalic_π phase to |1,1|1|1ket11tensor-productket1ket1\ket{1,1}\equiv\ket{1}\otimes\ket{1}| start_ARG 1 , 1 end_ARG ⟩ ≡ | start_ARG 1 end_ARG ⟩ ⊗ | start_ARG 1 end_ARG ⟩, any of its physical realizations must be able to address |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ differently than |01ket01\ket{01}| start_ARG 01 end_ARG ⟩ and |10ket10\ket{10}| start_ARG 10 end_ARG ⟩. In the qubit subspace qqsubscript𝑞𝑞\mathcal{H}_{qq}\subset\mathcal{H}caligraphic_H start_POSTSUBSCRIPT italic_q italic_q end_POSTSUBSCRIPT ⊂ caligraphic_H (where =dom(H)dom𝐻\mathcal{H}=\mathrm{dom}{(H)}caligraphic_H = roman_dom ( italic_H ) is the coupled-transmon Hilbert space which the Hamiltonian in Eq. 1 operates on), the eigenfrequencies corresponding to |0,1ket01\ket{0,1}| start_ARG 0 , 1 end_ARG ⟩ and |1,0ket10\ket{1,0}| start_ARG 1 , 0 end_ARG ⟩ simply sum to that of |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩, and any CZ gate would need to be realized through external considerations. If we do not restrict ourselves to qqsubscript𝑞𝑞\mathcal{H}_{qq}caligraphic_H start_POSTSUBSCRIPT italic_q italic_q end_POSTSUBSCRIPT, however, then the minimally anharmonic nature of transmons and the capacitive coupling differentiates the state |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ from the noted sum, and the possibility for addressing it separately opens up. Unfortunately, as discussed, the system rests in the single-qubit operational point, where the Hamiltonian can be approximated by H12+1H2tensor-productsubscript𝐻1subscript2tensor-productsubscript1subscript𝐻2H_{1}\otimes\mathcal{I}_{2}+\mathcal{I}_{1}\otimes H_{2}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊗ caligraphic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + caligraphic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⊗ italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT; thus the CZ operational point, at flux φZ>0subscript𝜑𝑍0\varphi_{Z}>0italic_φ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT > 0, must be one where qubit frequencies are close enough to allow for relatively strong coupling interactions.

In what follows, by ωijsubscript𝜔𝑖𝑗\omega_{ij}italic_ω start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT we mean the the eigenvalues of H𝐻Hitalic_H corresponding to the |i,jket𝑖𝑗\ket{i,j}| start_ARG italic_i , italic_j end_ARG ⟩ state, for which at φ=0𝜑0\varphi=0italic_φ = 0, ω00=0,ω01ω12,ω10ω11formulae-sequencesubscript𝜔000formulae-sequencesubscript𝜔01subscriptsuperscript𝜔21subscript𝜔10subscriptsuperscript𝜔11\omega_{00}=0,\omega_{01}\approx\omega^{2}_{1},\omega_{10}\approx\omega^{1}_{1}italic_ω start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT = 0 , italic_ω start_POSTSUBSCRIPT 01 end_POSTSUBSCRIPT ≈ italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ≈ italic_ω start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and as stated, ω11ω11+ω12subscript𝜔11subscriptsuperscript𝜔11subscriptsuperscript𝜔21\omega_{11}\approx\omega^{1}_{1}+\omega^{2}_{1}italic_ω start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ≈ italic_ω start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. In addition, when discussing the matrix representation of an operator on a subspace of \mathcal{H}caligraphic_H, we will work in a basis ordered by eigenvalues, which does not preserve standard qubit ordering when its domain is restricted to qqsubscript𝑞𝑞\mathcal{H}_{qq}caligraphic_H start_POSTSUBSCRIPT italic_q italic_q end_POSTSUBSCRIPT. To naturally create a CZ operation, we shall work in a seven-dimensional subspace of \mathcal{H}caligraphic_H, namely Zsubscript𝑍\mathcal{H}_{Z}\subset\mathcal{H}caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ⊂ caligraphic_H, spanned by the basis set 7={|i,j|i,j2}{|0,0,|2,2}subscript7conditional-setket𝑖𝑗𝑖𝑗2ket00ket22\mathcal{B}_{7}=\{\ket{i,j}|i,j\leq 2\}-\{\ket{0,0},\ket{2,2}\}caligraphic_B start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT = { | start_ARG italic_i , italic_j end_ARG ⟩ | italic_i , italic_j ≤ 2 } - { | start_ARG 0 , 0 end_ARG ⟩ , | start_ARG 2 , 2 end_ARG ⟩ }. We exclude |0,0ket00\ket{0,0}| start_ARG 0 , 0 end_ARG ⟩ and |2,2ket22\ket{2,2}| start_ARG 2 , 2 end_ARG ⟩ from this consideration since Hintsubscript𝐻intH_{\mathrm{int}}italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT as defined in Eq. 2 when restricted to the full qutrit subspace does not have any matrix elements that generate interaction in the first or ninth row or column (explicitly, i,j|Hint|2,2=2,2|Hint|i,j=i,j|Hint|0,0=0,0|Hint|i,j=0i,j2formulae-sequencebra𝑖𝑗subscript𝐻intket22bra22subscript𝐻intket𝑖𝑗bra𝑖𝑗subscript𝐻intket00bra00subscript𝐻intket𝑖𝑗0for-all𝑖𝑗2\bra{i,j}\!{H_{\mathrm{int}}}\!\ket{2,2}=\bra{2,2}\!{H_{\mathrm{int}}}\!\ket{i%,j}=\bra{i,j}\!{H_{\mathrm{int}}}\!\ket{0,0}=\bra{0,0}\!{H_{\mathrm{int}}}\!%\ket{i,j}=0\;\forall i,j\leq 2⟨ start_ARG italic_i , italic_j end_ARG | italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT | start_ARG 2 , 2 end_ARG ⟩ = ⟨ start_ARG 2 , 2 end_ARG | italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT | start_ARG italic_i , italic_j end_ARG ⟩ = ⟨ start_ARG italic_i , italic_j end_ARG | italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT | start_ARG 0 , 0 end_ARG ⟩ = ⟨ start_ARG 0 , 0 end_ARG | italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT | start_ARG italic_i , italic_j end_ARG ⟩ = 0 ∀ italic_i , italic_j ≤ 2 holds in the restriction to the qutrit subspace). For both notational simplicity and possible interpretational advantage, we write the Hamiltonian by means of block matrices, utilizing the well-known Pauli matrices and the lesser-known Gell-Mann matrices, whose use in a qutrit-like consideration is somewhat fundamental since, as the Pauli matrices span the Lie algebra 𝔰𝔲(2)𝔰𝔲2\mathfrak{su}(2)fraktur_s fraktur_u ( 2 ), the eight Gell-Mann matrices span 𝔰𝔲(3)𝔰𝔲3\mathfrak{su}(3)fraktur_s fraktur_u ( 3 ). For a complete list, description, and interpretation of these matrices, see Ref. 12; here we will only use them for convenience of notation (with the symbol λ𝜆\lambdaitalic_λ). Eq. 2 under this restriction (and the earlier mentioned eigenvalue ordering) becomes

Hint|ZHint(gσ1000g2(λ1+λ6)0002gσ1).evaluated-atsubscript𝐻intsubscript𝑍subscript𝐻intsimilar-to-or-equalsmatrix𝑔subscript𝜎1000𝑔2subscript𝜆1subscript𝜆60002𝑔subscript𝜎1{\left.\kern-1.2ptH_{\mathrm{int}}\vphantom{\big{|}}\right|_{\mathcal{H}_{Z}}}%\equiv H_{\mathrm{int}}\simeq\begin{pmatrix}g\sigma_{1}&0&0\\0&g\sqrt{2}(\lambda_{1}+\lambda_{6})&0\\0&0&2g\sigma_{1}\end{pmatrix}.italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT | start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≡ italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT ≃ ( start_ARG start_ROW start_CELL italic_g italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_g square-root start_ARG 2 end_ARG ( italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_λ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT ) end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 2 italic_g italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ) .(3)

on 7subscript7\mathcal{B}_{7}caligraphic_B start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT (for operator-matrix equivalence in some specified basis we use the symbol similar-to-or-equals\simeq). This operator representation hints at contributions important to mitigate in the execution of CZ: for example, the gσ1𝑔subscript𝜎1g\sigma_{1}italic_g italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT term represents a swapping action between |1,0ket10\ket{1,0}| start_ARG 1 , 0 end_ARG ⟩ and |0,1ket01\ket{0,1}| start_ARG 0 , 1 end_ARG ⟩ excitations at the coupling strength. In fact, this term can be used to naturally induce an iSWAP gate13, however this should be avoided for a successful and coherent CZ. In addition, the g2λ1𝑔2subscript𝜆1g\sqrt{2}\lambda_{1}italic_g square-root start_ARG 2 end_ARG italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and g2λ6𝑔2subscript𝜆6g\sqrt{2}\lambda_{6}italic_g square-root start_ARG 2 end_ARG italic_λ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT terms represent the main issue, i.e. swapping between |0,2ket02\ket{0,2}| start_ARG 0 , 2 end_ARG ⟩ and |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩, and |2,0ket20\ket{2,0}| start_ARG 2 , 0 end_ARG ⟩ and |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ respectively; in fact only the latter will be an issue, since we shall drive the transmon close to a point at which swapping is highly likely. Lastly, we have another swapping interaction with strength 2g2𝑔2g2 italic_g between |1,2ket12\ket{1,2}| start_ARG 1 , 2 end_ARG ⟩ and |2,1ket21\ket{2,1}| start_ARG 2 , 1 end_ARG ⟩, however ideally these should not matter much if leakage out of qqsubscript𝑞𝑞\mathcal{H}_{qq}caligraphic_H start_POSTSUBSCRIPT italic_q italic_q end_POSTSUBSCRIPT has been well-managed throughout the quantum gate sequence.

The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons (2)

Fig. 2 shows the low, medium, and high frequency ranges of the spectral decomposition of Hintsubscript𝐻intH_{\mathrm{int}}italic_H start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT, in which (a) and (b) show two avoided crossings useful for inducing various state changes. Most importantly, (c) gives an idea of how the CZ is implemented: the black dashed line, the sum of ω01subscript𝜔01\omega_{01}italic_ω start_POSTSUBSCRIPT 01 end_POSTSUBSCRIPT and ω10subscript𝜔10\omega_{10}italic_ω start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT, deviates from ω11subscript𝜔11\omega_{11}italic_ω start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT as flux is increased, which occurs because of the downward push on |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ from |2,0ket20\ket{2,0}| start_ARG 2 , 0 end_ARG ⟩. The optimal flux bias for CZ is 𝒜2subscript𝒜2\mathcal{A}_{2}caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, the avoided crossing between these two states, or just before it9, since being in the |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ state and moving towards 𝒜2subscript𝒜2\mathcal{A}_{2}caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT maximizes both accumulation of the difference in its frequency and that of the previously noted sum and the probability of remaining in |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ during the movement. As we have assumed coupling is minimal at zero flux bias, we can approximate the eigenstates of H𝐻Hitalic_H at φ=0𝜑0\varphi=0italic_φ = 0 to be the individual transmon eigenstates. Parameterizing H𝐻Hitalic_H by φ𝜑\varphiitalic_φ, if φH0subscript𝜑𝐻0\partial_{\varphi}H\approx 0∂ start_POSTSUBSCRIPT italic_φ end_POSTSUBSCRIPT italic_H ≈ 0, i.e. the trajectory φ(t)𝜑𝑡\varphi(t)italic_φ ( italic_t ) is adiabatic, then the system stays in its instantaneous eigenstate14 at φ(0)=0𝜑00\varphi(0)=0italic_φ ( 0 ) = 0. The rotating frame of the transmon at which the remainder of the quantum gate sequence is operated in is defined at the zero flux-bias point, so the Hamiltonian does have time-dependent components, but only along its diagonal. Since the Hamiltonian commutes with itself at different times, the Schrodinger equation and the adiabatic approximation dictates that the trajectory-dependent unitary UA:[0,)T(Z):subscript𝑈𝐴superscript0𝑇subscript𝑍U_{A}:[0,\infty)^{T}\to\mathcal{B}(\mathcal{H}_{Z})italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT : [ 0 , ∞ ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT → caligraphic_B ( caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT )

UA(φ)(eiΘ01(φ)000eiΘ10(φ)000eiΘ21(φ))similar-to-or-equalssubscript𝑈𝐴𝜑matrixsuperscript𝑒𝑖subscriptΘ01𝜑000superscript𝑒𝑖subscriptΘ10𝜑000superscript𝑒𝑖subscriptΘ21𝜑U_{A}(\varphi)\simeq\begin{pmatrix}e^{i\Theta_{01}(\varphi)}&0&\cdots&0\\0&e^{i\Theta_{10}(\varphi)}&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&e^{i\Theta_{21}(\varphi)}\end{pmatrix}italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ( italic_φ ) ≃ ( start_ARG start_ROW start_CELL italic_e start_POSTSUPERSCRIPT italic_i roman_Θ start_POSTSUBSCRIPT 01 end_POSTSUBSCRIPT ( italic_φ ) end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_e start_POSTSUPERSCRIPT italic_i roman_Θ start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_φ ) end_POSTSUPERSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL italic_e start_POSTSUPERSCRIPT italic_i roman_Θ start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT ( italic_φ ) end_POSTSUPERSCRIPT end_CELL end_ROW end_ARG )(4)

(here ()\mathcal{B}(\mathcal{H})caligraphic_B ( caligraphic_H ) denotes the Banach space of bounded linear operators on a Hilbert space \mathcal{H}caligraphic_H) is applied to Zsubscript𝑍\mathcal{H}_{Z}caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT in the basis 7subscript7\mathcal{B}_{7}caligraphic_B start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT, where T=dom(φ)𝑇dom𝜑T=\mathrm{dom}(\varphi)italic_T = roman_dom ( italic_φ ) is the time interval over which φ𝜑\varphiitalic_φ acts, and

Θij(φ)=Tδij(φ(t))𝑑t,subscriptΘ𝑖𝑗𝜑subscript𝑇subscript𝛿𝑖𝑗𝜑𝑡differential-d𝑡\Theta_{ij}(\varphi)=\int_{T}{\!\delta_{ij}(\varphi(t))\,dt},roman_Θ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_φ ) = ∫ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_φ ( italic_t ) ) italic_d italic_t ,(5)

where for some t𝑡titalic_t, δij(φ(t))=ωij(0)ωij(φ(t))subscript𝛿𝑖𝑗𝜑𝑡subscript𝜔𝑖𝑗0subscript𝜔𝑖𝑗𝜑𝑡\delta_{ij}(\varphi(t))=\omega_{ij}(0)-\omega_{ij}(\varphi(t))italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_φ ( italic_t ) ) = italic_ω start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( 0 ) - italic_ω start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_φ ( italic_t ) ) is the flux-dependent deviation of the eigenfrequency corresponding to |i,jket𝑖𝑗\ket{i,j}| start_ARG italic_i , italic_j end_ARG ⟩. We conclude this section by noting that, if we choose some flux trajectory φπsubscript𝜑𝜋\varphi_{\pi}italic_φ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT such that Θ11(φπ)Θ01(φπ)Θ10(φπ)π(mod2π)subscriptΘ11subscript𝜑𝜋subscriptΘ01subscript𝜑𝜋subscriptΘ10subscript𝜑𝜋annotated𝜋pmod2𝜋\Theta_{11}(\varphi_{\pi})-\Theta_{01}(\varphi_{\pi})-\Theta_{10}(\varphi_{\pi%})\equiv\pi\pmod{2\pi}roman_Θ start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) - roman_Θ start_POSTSUBSCRIPT 01 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) - roman_Θ start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) ≡ italic_π start_MODIFIER ( roman_mod start_ARG 2 italic_π end_ARG ) end_MODIFIER, then the CZ operation is realized up to global phase as the product of the restriction of UAsubscript𝑈𝐴U_{A}italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and single-qubit gates, namely

R3(Θ10(φπ))R3(Θ01(φπ))|AUA(φπ)|AϕCZ|A,subscriptsimilar-toitalic-ϕevaluated-atevaluated-attensor-productsubscript𝑅3subscriptΘ10subscript𝜑𝜋subscript𝑅3subscriptΘ01subscript𝜑𝜋subscript𝐴subscript𝑈𝐴subscript𝜑𝜋subscript𝐴evaluated-at𝐶𝑍subscript𝐴{\left.\kern-1.2ptR_{3}(\Theta_{10}(\varphi_{\pi}))\otimes R_{3}(\Theta_{01}(%\varphi_{\pi}))\vphantom{\big{|}}\right|_{\mathcal{H}_{A}}}{\left.\kern-1.2ptU%_{A}(\varphi_{\pi})\vphantom{\big{|}}\right|_{\mathcal{H}_{A}}}\sim_{\phi}{%\left.\kern-1.2ptCZ\vphantom{\big{|}}\right|_{\mathcal{H}_{A}}},italic_R start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( roman_Θ start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) ) ⊗ italic_R start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( roman_Θ start_POSTSUBSCRIPT 01 end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) ) | start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∼ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_C italic_Z | start_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,(6)

where A=Zqqsubscript𝐴subscript𝑍subscript𝑞𝑞\mathcal{H}_{A}=\mathcal{H}_{Z}\,\cap\,\mathcal{H}_{qq}caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ∩ caligraphic_H start_POSTSUBSCRIPT italic_q italic_q end_POSTSUBSCRIPT, the equivalence relation ϕsubscriptsimilar-toitalic-ϕ\sim_{\phi}∼ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT is defined for operators A,B()𝐴𝐵A,B\in\mathcal{B}(\mathcal{H})italic_A , italic_B ∈ caligraphic_B ( caligraphic_H ) on any Hilbert space \mathcal{H}caligraphic_H by AϕBsubscriptsimilar-toitalic-ϕ𝐴𝐵A\sim_{\phi}Bitalic_A ∼ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_B iff A=eiθB𝐴superscript𝑒𝑖𝜃𝐵A=e^{i\theta}Bitalic_A = italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT italic_B for some θ[0,2π)𝜃02𝜋\theta\in[0,2\pi)italic_θ ∈ [ 0 , 2 italic_π ), and we have used standard qubit rotation operators Rj(θ)=exp(iπθσj/2)subscript𝑅𝑗𝜃𝑖𝜋𝜃subscript𝜎𝑗2R_{j}(\theta)=\exp(-i\pi\theta\sigma_{j}/2)italic_R start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_θ ) = roman_exp ( start_ARG - italic_i italic_π italic_θ italic_σ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT / 2 end_ARG ). Note that although Eq. 6 is written for Asubscript𝐴\mathcal{H}_{A}caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT, the three-dimensional subspace of \mathcal{H}caligraphic_H involving all two qubit states except for |0,0ket00\ket{0,0}| start_ARG 0 , 0 end_ARG ⟩, it would also hold for the full qqAsubscript𝐴subscript𝑞𝑞\mathcal{H}_{qq}\supset\mathcal{H}_{A}caligraphic_H start_POSTSUBSCRIPT italic_q italic_q end_POSTSUBSCRIPT ⊃ caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT if the |0,0ket00\ket{0,0}| start_ARG 0 , 0 end_ARG ⟩ state is included in 7subscript7\mathcal{B}_{7}caligraphic_B start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT, yet it is not relevant to UAsubscript𝑈𝐴U_{A}italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT, which leaves |0,0ket00\ket{0,0}| start_ARG 0 , 0 end_ARG ⟩ unchanged under this extension.

III Error in Adiabatic Approximation

We next seek to mathematically quantify the leakage out of the computational subspace after the adiabatic transition; this manifests itself as error in the adiabatic approximation, which we derive first in the general case and then specify it to the leakages most important in this adiabatic passage. Given some time-dependent Hamiltonian H(t)𝐻𝑡H(t)italic_H ( italic_t ) acting on a Hilbert space \mathcal{H}caligraphic_H, we let {|ϕn(t):n+}conditional-setketsubscriptitalic-ϕ𝑛𝑡𝑛superscript\{\ket{\phi_{n}(t)}\colon n\in\mathbbm{Z}^{+}\}{ | start_ARG italic_ϕ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) end_ARG ⟩ : italic_n ∈ blackboard_Z start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT } be the set of satisfiers of the instantaneous eigenstate condition H(t)|ϕ(t)=E(t)|ϕ(t)𝐻𝑡ketitalic-ϕ𝑡𝐸𝑡ketitalic-ϕ𝑡H(t)\ket{\phi(t)}=E(t)\ket{\phi(t)}italic_H ( italic_t ) | start_ARG italic_ϕ ( italic_t ) end_ARG ⟩ = italic_E ( italic_t ) | start_ARG italic_ϕ ( italic_t ) end_ARG ⟩. Since these form a complete orthonormal basis of \mathcal{H}caligraphic_H, we can write a general solution to the Schrodinger equation as

|ψ(t)=ncn(t)|ϕn(t)ket𝜓𝑡subscript𝑛subscript𝑐𝑛𝑡ketsubscriptitalic-ϕ𝑛𝑡\ket{\psi(t)}=\sum_{n}{c_{n}(t)\ket{\phi_{n}(t)}}| start_ARG italic_ψ ( italic_t ) end_ARG ⟩ = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) | start_ARG italic_ϕ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) end_ARG ⟩(7)

for constants cn(t)subscript𝑐𝑛𝑡c_{n}(t)\in\mathbbm{C}italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) ∈ blackboard_C. Applying the Schrodinger equation and taking the inner product with ϕk(t)|brasubscriptitalic-ϕ𝑘𝑡\bra{\phi_{k}(t)}⟨ start_ARG italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) end_ARG |, rearranging gives14

idckdt=(Ek(t)iϕk(t)|ϕ˙k(t))ck(t)ik(t),𝑖Planck-constant-over-2-pidsubscript𝑐𝑘d𝑡subscript𝐸𝑘𝑡𝑖Planck-constant-over-2-piinner-productsubscriptitalic-ϕ𝑘𝑡subscript˙italic-ϕ𝑘𝑡subscript𝑐𝑘𝑡𝑖Planck-constant-over-2-pisubscript𝑘𝑡i\hbar\frac{\mathrm{d}c_{k}}{\mathrm{d}t}=\left(E_{k}(t)-i\hbar\braket{\phi_{k%}(t)}{\dot{\phi}_{k}(t)}\right)c_{k}(t)-i\hbar\mathcal{E}_{k}(t),italic_i roman_ℏ divide start_ARG roman_d italic_c start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG start_ARG roman_d italic_t end_ARG = ( italic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) - italic_i roman_ℏ ⟨ start_ARG italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) end_ARG | start_ARG over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) end_ARG ⟩ ) italic_c start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) - italic_i roman_ℏ caligraphic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) ,(8)

where ksubscript𝑘\mathcal{E}_{k}caligraphic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT represents the error in the adiabatic approximation i.e. leakage for instantaneous eigenstate |ϕkketsubscriptitalic-ϕ𝑘\ket{\phi_{k}}| start_ARG italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG ⟩, defined by

k(t)=nkcn(t)ϕk(t)|ϕ˙n(t).subscript𝑘𝑡subscript𝑛𝑘subscript𝑐𝑛𝑡inner-productsubscriptitalic-ϕ𝑘𝑡subscript˙italic-ϕ𝑛𝑡\mathcal{E}_{k}(t)=\sum_{n\neq k}{c_{n}(t)\braket{\phi_{k}(t)}{\dot{\phi}_{n}(%t)}}.caligraphic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) = ∑ start_POSTSUBSCRIPT italic_n ≠ italic_k end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) ⟨ start_ARG italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) end_ARG | start_ARG over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) end_ARG ⟩ .(9)

This follows intuition as if k(t)0subscript𝑘𝑡0\mathcal{E}_{k}(t)\approx 0caligraphic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) ≈ 0, a system that starts in some |ϕk(0)=|ψ(0)ketsubscriptitalic-ϕ𝑘0ket𝜓0\ket{\phi_{k}(0)}=\ket{\psi(0)}| start_ARG italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( 0 ) end_ARG ⟩ = | start_ARG italic_ψ ( 0 ) end_ARG ⟩ will remain in the same eigenstate. Thus, to minimize leakage out of the computational subspace, we wish to minimize the inner product in Eq. 9. In the case we are interested in, after differentiating the instantaneous eigenstate condition and manipulating, the error can be rewritten as

k(t)=nkcn(t)φ˙(t)ϕk(t)|φH|ϕn(t)ωn(φ(t))ωk(φ(t)).subscript𝑘𝑡subscript𝑛𝑘subscript𝑐𝑛𝑡˙𝜑𝑡brasubscriptitalic-ϕ𝑘𝑡subscript𝜑𝐻ketsubscriptitalic-ϕ𝑛𝑡Planck-constant-over-2-pisubscript𝜔𝑛𝜑𝑡Planck-constant-over-2-pisubscript𝜔𝑘𝜑𝑡\mathcal{E}_{k}(t)=\sum_{n\neq k}{c_{n}(t)\dot{\varphi}(t)\frac{\bra{\phi_{k}(%t)}\partial_{\varphi}H\ket{\phi_{n}(t)}}{\hbar\omega_{n}(\varphi(t))-\hbar%\omega_{k}(\varphi(t))}}.caligraphic_E start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) = ∑ start_POSTSUBSCRIPT italic_n ≠ italic_k end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) over˙ start_ARG italic_φ end_ARG ( italic_t ) divide start_ARG ⟨ start_ARG italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) end_ARG | ∂ start_POSTSUBSCRIPT italic_φ end_POSTSUBSCRIPT italic_H | start_ARG italic_ϕ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) end_ARG ⟩ end_ARG start_ARG roman_ℏ italic_ω start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_φ ( italic_t ) ) - roman_ℏ italic_ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_φ ( italic_t ) ) end_ARG .(10)

In summary, minimizing the leakage involves, as expected, minimizing the time derivative of the flux trajectory, yet it is also important to keep energies of states at risk of coupling far from each other, as well as it is to minimize the corresponding matrix element of φHsubscript𝜑𝐻\partial_{\varphi}H∂ start_POSTSUBSCRIPT italic_φ end_POSTSUBSCRIPT italic_H.

IV Theoretical Trajectory Design

The issue with the idealized CZ gate discussed in Sec. II above lies in the adiabatic approximation: perfect adiabaticity is not possible since tHsubscript𝑡𝐻\partial_{t}H∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_H cannot non-trivially be the zero operator. In this section we shall discuss how to quantify adiabaticity for a trajectory φ(t)𝜑𝑡\varphi(t)italic_φ ( italic_t ) using arguments related to the form of the Hamiltonian in Eq. 3. We shall work under the following assumptions and assertions for φ:T+:𝜑𝑇superscript\varphi\colon T\to\mathbbm{R}^{+}italic_φ : italic_T → blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT:

  1. 1.

    φ|T=0𝜑evaluated-atabsent𝑇0\varphi\evaluated{}_{\partial T}=0italic_φ start_ARG end_ARG | start_POSTSUBSCRIPT ∂ italic_T end_POSTSUBSCRIPT = 0. Inaction at the endpoints ensures that the qubit frequency starts and ends up in the optimal single-qubit operational point where coupling between transmons is negligible.

  2. 2.

    Tζ(φ(t))𝑑tπ(mod2π)subscript𝑇𝜁𝜑𝑡differential-d𝑡annotated𝜋pmod2𝜋\int_{T}{\!\zeta(\varphi(t))\,dt}\equiv\pi\pmod{2\pi}∫ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT italic_ζ ( italic_φ ( italic_t ) ) italic_d italic_t ≡ italic_π start_MODIFIER ( roman_mod start_ARG 2 italic_π end_ARG ) end_MODIFIER, where ζ(φ)=δ11(φ)δ10(φ)δ01(φ)𝜁𝜑subscript𝛿11𝜑subscript𝛿10𝜑subscript𝛿01𝜑\zeta(\varphi)=\delta_{11}(\varphi)-\delta_{10}(\varphi)-\delta_{01}(\varphi)italic_ζ ( italic_φ ) = italic_δ start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT ( italic_φ ) - italic_δ start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_φ ) - italic_δ start_POSTSUBSCRIPT 01 end_POSTSUBSCRIPT ( italic_φ ). As mentioned in the previous section, this condition generates the relative phase applied to |1,1ket11\ket{1,1}| start_ARG 1 , 1 end_ARG ⟩ during tuning.

  3. 3.

    The set of implementable flux pulses is exactly C0(T)subscript𝐶0𝑇C_{0}(T)italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_T ). That is, any φ(t)𝜑𝑡\varphi(t)italic_φ ( italic_t ) is physically continuous, and any C0subscript𝐶0C_{0}italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT function may be flux-implemented.

  4. 4.

    φ(t)𝜑𝑡\varphi(t)italic_φ ( italic_t ) does not induce a |1,1|2,0ket11ket20\ket{1,1}\longleftrightarrow\ket{2,0}| start_ARG 1 , 1 end_ARG ⟩ ⟷ | start_ARG 2 , 0 end_ARG ⟩ transition with high likelihood, i.e. 2,0(t)|φH|1,1(t)0bra20𝑡subscript𝜑𝐻ket11𝑡0\bra{2,0(t)}\partial_{\varphi}H\ket{1,1(t)}\approx 0⟨ start_ARG 2 , 0 ( italic_t ) end_ARG | ∂ start_POSTSUBSCRIPT italic_φ end_POSTSUBSCRIPT italic_H | start_ARG 1 , 1 ( italic_t ) end_ARG ⟩ ≈ 0.

  5. 5.

    φ(t)𝜑𝑡\varphi(t)italic_φ ( italic_t ) does not induce a |0,1|1,0ket01ket10\ket{0,1}\longleftrightarrow\ket{1,0}| start_ARG 0 , 1 end_ARG ⟩ ⟷ | start_ARG 1 , 0 end_ARG ⟩ transition with high likelihood, i.e. 1,0(t)|φH|0,1(t)0bra10𝑡subscript𝜑𝐻ket01𝑡0\bra{1,0(t)}\partial_{\varphi}H\ket{0,1(t)}\approx 0⟨ start_ARG 1 , 0 ( italic_t ) end_ARG | ∂ start_POSTSUBSCRIPT italic_φ end_POSTSUBSCRIPT italic_H | start_ARG 0 , 1 ( italic_t ) end_ARG ⟩ ≈ 0.

Incidentally, the last requirement is satisfied by keeping φ(t)<𝒜1tT𝜑𝑡subscript𝒜1for-all𝑡𝑇\varphi(t)<\mathcal{A}_{1}\>\forall t\in Titalic_φ ( italic_t ) < caligraphic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∀ italic_t ∈ italic_T as shown in Fig. 2(a), and we can at least partially satisfy condition 4 by setting φ(t)𝒜2𝜑𝑡subscript𝒜2\varphi(t)\leq\mathcal{A}_{2}italic_φ ( italic_t ) ≤ caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, thus we restrict the codomain of φ𝜑\varphiitalic_φ to [0,𝒜2]0subscript𝒜2[0,\mathcal{A}_{2}][ 0 , caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ]. Keeping these conditions in mind, we look to the Zsubscript𝑍\mathcal{H}_{Z}caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT Hamiltonian in Eq. 3, and transform into the rotating frame set by H(φ=0)𝐻𝜑0H(\varphi=0)italic_H ( italic_φ = 0 ), which has ‘central’ matrix element

cos((Δtα2t))λ1+sin((Δtα2t))λ2+cos((Δt+α1t))λ6+sin((Δt+α1t))λ7diag(0,δ,2δ),Δ𝑡subscript𝛼2𝑡subscript𝜆1Δ𝑡subscript𝛼2𝑡subscript𝜆2Δ𝑡subscript𝛼1𝑡subscript𝜆6Δ𝑡subscript𝛼1𝑡subscript𝜆7diag0𝛿2𝛿\cos{(\Delta t-\alpha_{2}t)}\lambda_{1}+\sin{(\Delta t-\alpha_{2}t)}\lambda_{2%}+\cos{(\Delta t+\alpha_{1}t)}\lambda_{6}\\+\sin{(\Delta t+\alpha_{1}t)}\lambda_{7}-\mathrm{diag}{(0,\delta,2\delta)},start_ROW start_CELL roman_cos ( start_ARG ( roman_Δ italic_t - italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_t ) end_ARG ) italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + roman_sin ( start_ARG ( roman_Δ italic_t - italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_t ) end_ARG ) italic_λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + roman_cos ( start_ARG ( roman_Δ italic_t + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_t ) end_ARG ) italic_λ start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL + roman_sin ( start_ARG ( roman_Δ italic_t + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_t ) end_ARG ) italic_λ start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT - roman_diag ( 0 , italic_δ , 2 italic_δ ) , end_CELL end_ROW(11)

where α1subscript𝛼1\alpha_{1}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and α2subscript𝛼2\alpha_{2}italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are the anharmonicities of the transmons, δ𝛿\deltaitalic_δ is the deviation of the qubit frequency of transmon one, and ΔΔ\Deltaroman_Δ is the detuning between the qubit frequencies of the two transmons at φ=0𝜑0\varphi=0italic_φ = 0. The eigenfrequency difference ζ(φ)𝜁𝜑\zeta(\varphi)italic_ζ ( italic_φ ) is most efficiently raised when φ𝜑\varphiitalic_φ is kept near the 𝒜2subscript𝒜2\mathcal{A}_{2}caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT avoided crossing as in Fig. 2(c), and most time should be spent there in the ideal case. This point is unfortunately the most dangerous with respect to condition 4, and we seek to develop a rough ansatz for how to construct φ(t)𝜑𝑡\varphi(t)italic_φ ( italic_t ) such that this is carefully handled. We see that the unwanted transitions occur in the latter terms of Eq. 11, which, when restricted to the interaction subspace Isubscript𝐼\mathcal{H}_{I}caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT spanned by {|1,1,|2,0}ket11ket20\{\ket{1,1},\ket{2,0}\}{ | start_ARG 1 , 1 end_ARG ⟩ , | start_ARG 2 , 0 end_ARG ⟩ }, produces the propagator UEv(t)𝒰(I)subscript𝑈Ev𝑡𝒰subscript𝐼U_{\mathrm{Ev}}(t)\in\mathcal{U}(\mathcal{H}_{I})italic_U start_POSTSUBSCRIPT roman_Ev end_POSTSUBSCRIPT ( italic_t ) ∈ caligraphic_U ( caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ), where

UEv(t)=𝒯exp(i0t(δ(t)ei(Δ+α1)tei(Δ+α1)t2δ(t))𝑑t)subscript𝑈Ev𝑡𝒯𝑖superscriptsubscript0𝑡matrix𝛿superscript𝑡superscript𝑒𝑖Δsubscript𝛼1superscript𝑡superscript𝑒𝑖Δsubscript𝛼1superscript𝑡2𝛿superscript𝑡differential-dsuperscript𝑡U_{\mathrm{Ev}}(t)=\mathcal{T}\exp{-i\int_{0}^{t}{\!\begin{pmatrix}-\delta(t^{%\prime})&e^{-i(\Delta+\alpha_{1})t^{\prime}}\\e^{i(\Delta+\alpha_{1})t^{\prime}}&-2\delta(t^{\prime})\end{pmatrix}\,dt^{%\prime}}}italic_U start_POSTSUBSCRIPT roman_Ev end_POSTSUBSCRIPT ( italic_t ) = caligraphic_T roman_exp ( start_ARG - italic_i ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( start_ARG start_ROW start_CELL - italic_δ ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_CELL start_CELL italic_e start_POSTSUPERSCRIPT - italic_i ( roman_Δ + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT italic_i ( roman_Δ + italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL - 2 italic_δ ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_CELL end_ROW end_ARG ) italic_d italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG )(12)

where 𝒯𝒯\mathcal{T}caligraphic_T is the Dyson time ordering operator15 (and we use the notation 𝒰(V)𝒰𝑉\mathcal{U}(V)caligraphic_U ( italic_V ) to signify the group of unitary operators on a vector space V𝑉Vitalic_V). Ideally the time-evolution restricted to Isubscript𝐼\mathcal{H}_{I}caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT is just the two-dimensional identity, which should not create any swapping interaction; in this case, clearly δ(φ)𝛿𝜑\delta(\varphi)italic_δ ( italic_φ ) must be minimized to remove |2,0ket20\ket{2,0}| start_ARG 2 , 0 end_ARG ⟩ amplification, and while the off-diagonal terms cannot be easily controlled, repeated integration by parts shows that their contribution is lowered with sufficiently distant initial qubit frequencies.

We address the issue of minimizing δ(φ)𝛿𝜑\delta(\varphi)italic_δ ( italic_φ ) and tHsubscript𝑡𝐻\partial_{t}H∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_H simultaneously by promoting the set of continuously differentiable choices for φ𝜑\varphiitalic_φ, that is S=C1[0,𝒜2]T𝑆subscript𝐶1superscript0subscript𝒜2𝑇S=C_{1}\,\cap\,[0,\mathcal{A}_{2}]^{T}italic_S = italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ [ 0 , caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, to a semi-normed associative algebra 𝒩=(S,𝒩:𝒩,+,)\mathcal{N}=(S,\|\!\cdot\!\|_{\mathcal{N}}\colon\mathcal{N}\to\mathbbm{R},+,\cdot)caligraphic_N = ( italic_S , ∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT : caligraphic_N → blackboard_R , + , ⋅ ) under usual function addition and multiplication. We make a simple but non-trivial choice for 𝒩\|\cdot\|_{\mathcal{N}}∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT, where, for constants υ,κ𝜐𝜅\upsilon,\kappaitalic_υ , italic_κ,

f𝒩=T{υδ(f(t))+κδ˙(f(t))2}𝑑tf𝒩,subscriptnorm𝑓𝒩subscript𝑇𝜐𝛿𝑓𝑡𝜅˙𝛿superscript𝑓𝑡2differential-d𝑡for-all𝑓𝒩\|f\|_{\mathcal{N}}=\int_{T}{\!\Big{\{}\upsilon\delta(f(t))+\kappa\dot{\delta}%(f(t))^{2}\Big{\}}\,dt}\;\;\forall f\in\mathcal{N},∥ italic_f ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT { italic_υ italic_δ ( italic_f ( italic_t ) ) + italic_κ over˙ start_ARG italic_δ end_ARG ( italic_f ( italic_t ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } italic_d italic_t ∀ italic_f ∈ caligraphic_N ,(13)

(note that the semi-norm may take on negative values) which defines a ‘large’ element as one which is generates a large change in frequency and its time-derivative, i.e. one that is diabatic. Of course, this is just one arbitrary way of defining diabaticity, but it provides a good starting point for finding sufficiently adiabatic trajectories. Note that the desired trajectory φ𝜑\varphiitalic_φ must additionally satisfy condition 2, and if one imagines the norm on 𝒩𝒩\mathcal{N}caligraphic_N as a single-valued uncountably-infinite dimensional curve, then we are looking for the minimum of the intersection of this curve and the restriction on ζ(φ)𝜁𝜑\zeta(\varphi)italic_ζ ( italic_φ ). This is easily approached using the Calculus of Variations, in which constrained variation via Lagrange multipliers is performed (for a rigorous treatment of this procedure see Ref. 16). In the general case, for a Lagrange multiplier λ𝜆\lambdaitalic_λ, we minimize the functional F[φ]𝐹delimited-[]𝜑F[\varphi]italic_F [ italic_φ ] while satisfying constraint functional G[φ]=c0𝐺delimited-[]𝜑subscript𝑐0G[\varphi]=c_{0}\in\mathbbm{R}italic_G [ italic_φ ] = italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ blackboard_R by imposing δ(F+λG)=0𝛿𝐹𝜆𝐺0\delta(F+\lambda G)=0italic_δ ( italic_F + italic_λ italic_G ) = 0 (δ𝛿\deltaitalic_δ being the first variation). In our case, F[φ]=φ𝒩𝐹delimited-[]𝜑subscriptnorm𝜑𝒩F[\varphi]=\|\varphi\|_{\mathcal{N}}italic_F [ italic_φ ] = ∥ italic_φ ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT and G[φ]=Tζ(φ(t))𝑑tπ(mod2π)𝐺delimited-[]𝜑subscript𝑇𝜁𝜑𝑡differential-d𝑡annotated𝜋pmod2𝜋G[\varphi]=\int_{T}{\!\zeta(\varphi(t))\,dt}\equiv\pi\pmod{2\pi}italic_G [ italic_φ ] = ∫ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT italic_ζ ( italic_φ ( italic_t ) ) italic_d italic_t ≡ italic_π start_MODIFIER ( roman_mod start_ARG 2 italic_π end_ARG ) end_MODIFIER. If the functional sum is treated as an effective classical action, then the effective Lagrangian is

eff(φ,φ˙,t)=υcos(φ)κ4φ˙2tan(φ)sin(φ)+λζ(φ),subscripteff𝜑˙𝜑𝑡𝜐𝜑𝜅4superscript˙𝜑2𝜑𝜑𝜆𝜁𝜑\mathcal{L}_{\mathrm{eff}}(\varphi,\dot{\varphi},t)=\upsilon\sqrt{\cos{\varphi%}}-\frac{\kappa}{4}\dot{\varphi}^{2}\tan{\varphi}\sin{\varphi}+\lambda\zeta(%\varphi),caligraphic_L start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_φ , over˙ start_ARG italic_φ end_ARG , italic_t ) = italic_υ square-root start_ARG roman_cos ( start_ARG italic_φ end_ARG ) end_ARG - divide start_ARG italic_κ end_ARG start_ARG 4 end_ARG over˙ start_ARG italic_φ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_tan ( start_ARG italic_φ end_ARG ) roman_sin ( start_ARG italic_φ end_ARG ) + italic_λ italic_ζ ( italic_φ ) ,(14)

where we have used the definition for δ(t)𝛿𝑡\delta(t)italic_δ ( italic_t ) and removed the arbitrary multiplicative factor ω1α1subscript𝜔1subscript𝛼1\omega_{1}-\alpha_{1}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT by absorbing into the Lagrange multiplier. Applying the variation gives

λcos(φ(t))cot(φ(t))ζφ2υκcos3φ(t)+(1+cos2φ(t))(dφ(t)dt)2sin((2φ(t)))d2φdt2=0,𝜆𝜑𝑡𝜑𝑡𝜁𝜑2𝜐𝜅superscript3𝜑𝑡1superscript2𝜑𝑡superscript𝑑𝜑𝑡𝑑𝑡22𝜑𝑡superscript𝑑2𝜑𝑑superscript𝑡20\lambda\cos{\varphi(t)}\cot{\varphi(t)}\frac{\partial\zeta}{\partial\varphi}-2%\frac{\upsilon}{\kappa}\sqrt{\cos^{3}\!\varphi(t)}\,+\\(1+\cos^{2}\!\varphi(t))\left(\frac{d\varphi(t)}{dt}\right)^{2}-\sin{(2\varphi%(t))}\frac{d^{2}\varphi}{dt^{2}}=0,start_ROW start_CELL italic_λ roman_cos ( start_ARG italic_φ ( italic_t ) end_ARG ) roman_cot ( start_ARG italic_φ ( italic_t ) end_ARG ) divide start_ARG ∂ italic_ζ end_ARG start_ARG ∂ italic_φ end_ARG - 2 divide start_ARG italic_υ end_ARG start_ARG italic_κ end_ARG square-root start_ARG roman_cos start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_φ ( italic_t ) end_ARG + end_CELL end_ROW start_ROW start_CELL ( 1 + roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_φ ( italic_t ) ) ( divide start_ARG italic_d italic_φ ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - roman_sin ( start_ARG ( 2 italic_φ ( italic_t ) ) end_ARG ) divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_φ end_ARG start_ARG italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = 0 , end_CELL end_ROW(15)

a highly non-linear second order equation after absorbing more constants into λ𝜆\lambdaitalic_λ. With this, we impose that φ|T=φ˙|T=0𝜑evaluated-atabsent𝑇˙𝜑evaluated-atabsent𝑇0\varphi\evaluated{}_{\partial T}=\dot{\varphi}\evaluated{}_{\partial T}=0italic_φ start_ARG end_ARG | start_POSTSUBSCRIPT ∂ italic_T end_POSTSUBSCRIPT = over˙ start_ARG italic_φ end_ARG start_ARG end_ARG | start_POSTSUBSCRIPT ∂ italic_T end_POSTSUBSCRIPT = 0 along with the constraint equation for the multiplier. This, in fact, is problematic enough to discourage physical realization of the optimal solution; the main issue is the trigonometric singularity on T𝑇\partial T∂ italic_T induced by the boundary condition in the first term. We shall instead use Eq. 15 as another method of gauging how diabatic a trajectory φ𝜑\varphiitalic_φ is; this equation, however, gives us a distance at each t𝑡titalic_t from an optimal solution curve, something more valuable than the norm presented above. As for the singularity, we note that only relative diabaticity is relevant to this discussion, and we shall thus consider trajectories that start at some small ε0greater-than-or-equivalent-to𝜀0\varepsilon\gtrsim 0italic_ε ≳ 0.

V Parametric Optimization

To proceed, we utilize Eq. 15 through a functional operator 𝒟:SC1:𝒟superscript𝑆subscript𝐶1\mathcal{D}\colon S^{\prime}\to C_{1}caligraphic_D : italic_S start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT equal to the LHS, where S=C1[0,𝒜2]Tsuperscript𝑆subscript𝐶1superscript0subscript𝒜2superscript𝑇S^{\prime}=C_{1}\,\cap\,[0,\mathcal{A}_{2}]^{T^{\prime}}italic_S start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ [ 0 , caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] start_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT, T=[ε,τ]superscript𝑇𝜀𝜏T^{\prime}=[\varepsilon,\tau]italic_T start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = [ italic_ε , italic_τ ], and τ𝜏\tauitalic_τ is the CZ gate time. As potential flux trajectories, we shall consider a few possible curves detailed below for demonstration (all temporal units are in ns𝑠sitalic_s):

  1. 1.

    Standard Gaussian. For this we use the standard equation

    𝒢(t,σ,τ/2)=𝒫σ,τCσ,τe12(tτ/2σ)2𝒵σ,τ,𝒢𝑡𝜎𝜏2subscript𝒫𝜎𝜏subscript𝐶𝜎𝜏superscript𝑒12superscript𝑡𝜏2𝜎2subscript𝒵𝜎𝜏\mathscr{G}(t,\sigma,\tau/2)=\mathcal{P}_{\sigma,\tau}C_{\sigma,\tau}e^{-\frac%{1}{2}\left(\frac{t-\tau/2}{\sigma}\right)^{2}}-\mathcal{Z}_{\sigma,\tau},script_G ( italic_t , italic_σ , italic_τ / 2 ) = caligraphic_P start_POSTSUBSCRIPT italic_σ , italic_τ end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_σ , italic_τ end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_t - italic_τ / 2 end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT - caligraphic_Z start_POSTSUBSCRIPT italic_σ , italic_τ end_POSTSUBSCRIPT ,(16)

    where Cσ,τsubscript𝐶𝜎𝜏C_{\sigma,\tau}italic_C start_POSTSUBSCRIPT italic_σ , italic_τ end_POSTSUBSCRIPT normalizes the usual part of the distribution to one, 𝒫σ,μsubscript𝒫𝜎𝜇\mathcal{P}_{\sigma,\mu}caligraphic_P start_POSTSUBSCRIPT italic_σ , italic_μ end_POSTSUBSCRIPT satisfies the π(mod2π)annotated𝜋pmod2𝜋\pi\pmod{2\pi}italic_π start_MODIFIER ( roman_mod start_ARG 2 italic_π end_ARG ) end_MODIFIER requirement on ζ𝜁\zetaitalic_ζ, and 𝒵σ,τsubscript𝒵𝜎𝜏\mathcal{Z}_{\sigma,\tau}caligraphic_Z start_POSTSUBSCRIPT italic_σ , italic_τ end_POSTSUBSCRIPT ensures that 𝒢(0,σ)=𝒢(τ,σ)=0𝒢0𝜎𝒢𝜏𝜎0\mathscr{G}(0,\sigma)=\mathscr{G}(\tau,\sigma)=0script_G ( 0 , italic_σ ) = script_G ( italic_τ , italic_σ ) = 0. This will act as a control relative to the other pulses, as we expect to find that by increasing σ𝜎\sigmaitalic_σ (and subsequently τ𝜏\tauitalic_τ, otherwise there is a diabatic jump on the boundary) we can arbitrarily reduce the diabaticity, and that being the only parameter makes this a somewhat trivial case. From now on, we shall suppress the constants’ dependence on τ𝜏\tauitalic_τ.

  2. 2.

    Isolated Mollifier. We introduce a mollifier curve, namely

    (t,σ,τ/2)={𝒫σCσe((tτ/2σ)21)1ift𝒲0otherwise,\mathscr{M}(t,\sigma,\tau/2)=\left\{\begin{matrix}\mathcal{P}_{\sigma}C_{%\sigma}e^{\left(\left(\frac{t-\tau/2}{\sigma}\right)^{2}-1\right)^{-1}}&\text{%if }t\in\mathcal{W}\\0&\text{otherwise}\end{matrix}\right.,script_M ( italic_t , italic_σ , italic_τ / 2 ) = { start_ARG start_ROW start_CELL caligraphic_P start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT ( ( divide start_ARG italic_t - italic_τ / 2 end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL if italic_t ∈ caligraphic_W end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL otherwise end_CELL end_ROW end_ARG ,(17)

    an often-used object when a point of nondifferentiability must be smoothed out (here 𝒲=[τ/2σ,τ/2+σ]𝒲𝜏2𝜎𝜏2𝜎\mathcal{W}=[\tau/2-\sigma,\tau/2+\sigma]caligraphic_W = [ italic_τ / 2 - italic_σ , italic_τ / 2 + italic_σ ]). Like the Gaussian waveform, this has only one width-parameter, and therefore acts again as a trivial control with respect to optimization. This curve has the advantage that all of its derivatives are exactly zero on T𝑇\partial T∂ italic_T.

  3. 3.

    Mollified Gaussian Convolving the two previous trajectories, we have a less trivial case, in which it is of interest where each curve is placed. This takes the following form:

    (t,σ,τ/2,μ)=T𝒢(t,σ,τ/2)(tt,σ,μ)𝑑t𝑡𝜎𝜏2𝜇subscript𝑇𝒢𝑡𝜎𝜏2superscript𝑡𝑡𝜎𝜇differential-dsuperscript𝑡\mathscr{F}(t,\sigma,\tau/2,\mu)=\int_{T}{\!\mathscr{G}(t,\sigma,\tau/2)%\mathscr{M}(t^{\prime}-t,\sigma,\mu)\,dt^{\prime}}script_F ( italic_t , italic_σ , italic_τ / 2 , italic_μ ) = ∫ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT script_G ( italic_t , italic_σ , italic_τ / 2 ) script_M ( italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_t , italic_σ , italic_μ ) italic_d italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT(18)

    Adjustment of the parameter μ𝜇\muitalic_μ changes where the convolution occurs; we have also suppressed any normalization constants which maintain the ζ𝜁\zetaitalic_ζ requirement.

  4. 4.

    Prepulsed Gaussian. We ‘prepulse’ the above Gaussian waveform, giving

    (t,σ,τ/2,μ)=13𝒢(t,σ,μ)+𝒢(t,σ,τ/2)𝑡𝜎𝜏2𝜇13𝒢𝑡𝜎𝜇𝒢𝑡𝜎𝜏2\mathscr{H}(t,\sigma,\tau/2,\mu)=\frac{1}{3}\mathscr{G}(t,\sigma,\mu)+\mathscr%{G}(t,\sigma,\tau/2)script_H ( italic_t , italic_σ , italic_τ / 2 , italic_μ ) = divide start_ARG 1 end_ARG start_ARG 3 end_ARG script_G ( italic_t , italic_σ , italic_μ ) + script_G ( italic_t , italic_σ , italic_τ / 2 )(19)

    by using another Gaussian at some point during the trajectory; this could relieve some of the diabaticity generated by the original curve since it concentrates some of the ‘mass’ to a different area. Though the arbitrary factor of 1/3 was chosen as a relative height between the prepulse and the main Gaussian, the important effects should at least somewhat be observed in this trial.

  5. 5.

    Mollifier-Prepulsed Gaussian Similar to the previous curve, we again prepulse a Gaussian trajectory, however this time we do so using an isolated mollifier, which becomes

    𝒥(t,σ,τ/2,μ)=16(t,σ,μ)+𝒢(t,σ,τ/2).𝒥𝑡𝜎𝜏2𝜇16𝑡𝜎𝜇𝒢𝑡𝜎𝜏2\mathscr{J}(t,\sigma,\tau/2,\mu)=\frac{1}{6}\mathscr{M}(t,\sigma,\mu)+\mathscr%{G}(t,\sigma,\tau/2).script_J ( italic_t , italic_σ , italic_τ / 2 , italic_μ ) = divide start_ARG 1 end_ARG start_ARG 6 end_ARG script_M ( italic_t , italic_σ , italic_μ ) + script_G ( italic_t , italic_σ , italic_τ / 2 ) .(20)

These trajectories are shown in Fig. 3 with fixed example parameters.

The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons (3)

As the purpose of these is a demonstration of the model detailed in this work, we will proceed with a visual representation of the non-simulative optimization process. In practice, when flux trajectories are further constrained by lab conditions, families of flux trajectories should be computationally optimized to determine suitable parameter values. Here, however, graphical comparison describes the procedure well enough.

We can confirm our control hypothesis on the first two, singly-parametric trajectories, shown in Fig. 4, since the 𝒩𝒩\mathcal{N}caligraphic_N-norm can clearly arbitrarily be reduced by choosing large values for σ𝜎\sigmaitalic_σ. Of course, the drawback is having greater derivatives around T𝑇\partial T∂ italic_T; we can refer to 𝒟𝒟\mathcal{D}caligraphic_D for more specificity on this, which we have computed only for the Standard Gaussian trajectory for demonstration of principle [Fig. 5]. As one can see, the additional measure 𝒟𝒟\mathcal{D}caligraphic_D provides insight as to at which location a trajectory is diabatic. This not only acts as a secondary metric but also assists in adjusting families for further optimization. More physically, 𝒟𝒟\mathcal{D}caligraphic_D can also aid in determining adjustments to flux trajectories which aim to decrease errors due to leakage, in accordance with the adiabatic error term (t)𝑡\mathcal{E}(t)caligraphic_E ( italic_t ) defined in Sec. III.

For the other curves, we evaluate the 𝒩𝒩\mathcal{N}caligraphic_N-norm on non-temporal parameter space, shown in Fig. 5. Again in accordance with expectations, we see that while shifting (varying μ𝜇\muitalic_μ) does not affect the norm, we should be able to increase adiabaticity by enlarging σ𝜎\sigmaitalic_σ. In addition, we eliminate from a consideration of optimization the mollified Gaussian trajectory due its large 𝒩𝒩\mathcal{N}caligraphic_N-norm in comparison to the other two trajectories.

The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons (4)

VI Quantum Mechanical Simulation

To conclude a demonstration of this process, we can directly simulate the effects of the some of the optimal trajectories discussed in the previous section. For simplicity, we do not consider the effects of stochastic decoherence on the system, which greatly computationally eases both the simulation process and comparison of results. We make this choice almost without loss of generality, since any trends present in this analysis are likely to persist with the inclusion of decoherence into the model.

While challenging to classify the results of a simulation under a specific trajectory, we can simplify the procedure by assuming perfect linearity on the restriction to Zsubscript𝑍\mathcal{H}_{Z}caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT; we thus have a representation of the operator by temporally evolving the elements of the tensor product basis set. We can construct such a matrix representation using

(φ)=|e,|f8(f|UA(φ)|e)|ef|,𝜑subscriptket𝑒ket𝑓subscript8tensor-productbra𝑓subscript𝑈𝐴𝜑ket𝑒ket𝑒bra𝑓\mathcal{M}(\varphi)=\sum_{\ket{e},\,\ket{f}\,\in\,\mathcal{B}_{8}}{\left(\bra%{f}U_{A}(\varphi)\ket{e}\right)\ket{e}\otimes\bra{f}},caligraphic_M ( italic_φ ) = ∑ start_POSTSUBSCRIPT | start_ARG italic_e end_ARG ⟩ , | start_ARG italic_f end_ARG ⟩ ∈ caligraphic_B start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( ⟨ start_ARG italic_f end_ARG | italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ( italic_φ ) | start_ARG italic_e end_ARG ⟩ ) | start_ARG italic_e end_ARG ⟩ ⊗ ⟨ start_ARG italic_f end_ARG | ,(21)

where 8=7{|0,0}subscript8subscript7ket00\mathcal{B}_{8}=\mathcal{B}_{7}\,\cup\,\{\ket{0,0}\}caligraphic_B start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = caligraphic_B start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT ∪ { | start_ARG 0 , 0 end_ARG ⟩ }. We have included the basis vector |0,0ket00\ket{0,0}| start_ARG 0 , 0 end_ARG ⟩ to draw an accurate comparison between the ideal CPHASE and (φ)𝜑\mathcal{M}(\varphi)caligraphic_M ( italic_φ ) (note that UAsubscript𝑈𝐴U_{A}italic_U start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT as used here has been extended to act on a Hilbert space, 8subscript8\mathcal{H}_{8}caligraphic_H start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, larger than Zsubscript𝑍\mathcal{H}_{Z}caligraphic_H start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT which is spanned by 7subscript7\mathcal{B}_{7}caligraphic_B start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT). Defining the accuracy of \mathcal{M}caligraphic_M is equivalent to choosing a matrix norm, thus for simplicity we make use of the 2subscript2\ell_{2}roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT spectral norm17 to compute the distance from \mathcal{M}caligraphic_M to a perfect CZ𝐶𝑍CZitalic_C italic_Z. We define :8+:subscript8superscript\mathcal{F}:\mathcal{H}_{8}\to\mathbbm{R}^{+}caligraphic_F : caligraphic_H start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT → blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT such that

((φ))=max|𝐱|2 0|((φ)CZ)𝐱|2|𝐱|2,𝜑subscriptsubscript𝐱subscript2 0subscript𝜑𝐶𝑍𝐱subscript2subscript𝐱subscript2\mathcal{F}(\mathcal{M}(\varphi))=\max_{\absolutevalue{\mathbf{x}}_{{\ell}_{2}%}\neq\,0}{\frac{\absolutevalue{\left(\mathcal{M}(\varphi)-CZ\right)\mathbf{x}}%_{\ell_{2}}}{\absolutevalue{\mathbf{x}}_{\ell_{2}}}},caligraphic_F ( caligraphic_M ( italic_φ ) ) = roman_max start_POSTSUBSCRIPT | start_ARG bold_x end_ARG | start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≠ 0 end_POSTSUBSCRIPT divide start_ARG | start_ARG ( caligraphic_M ( italic_φ ) - italic_C italic_Z ) bold_x end_ARG | start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG | start_ARG bold_x end_ARG | start_POSTSUBSCRIPT roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ,(22)

which is computed with the standard singular value method (note that CZ𝐶𝑍CZitalic_C italic_Z as used here has been extended with zeroes to eight dimensions). For the Gaussian trajectory 𝔊𝔊\mathfrak{G}fraktur_G with σ=3.75𝜎3.75\sigma=3.75italic_σ = 3.75, we obtain the following simulation result (abbreviated to Asubscript𝐴\mathcal{H}_{A}caligraphic_H start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT),

(𝔊)ϕ[0.50+0.77i0.300.08i0.00.090.14i0.950.22i0.01i0.00.01.110.20i]subscriptsimilar-to-or-equalsitalic-ϕ𝔊matrix0.500.77𝑖0.300.08𝑖0.00.090.14𝑖0.950.22𝑖0.01𝑖0.00.01.110.20𝑖\mathcal{M}(\mathfrak{G})\simeq_{\phi}\begin{bmatrix}0.50+0.77i&-0.30-0.08i&0.%0\\0.09-0.14i&0.95-0.22i&-0.01i\\0.0&0.0&-1.11-0.20i\\\end{bmatrix}caligraphic_M ( fraktur_G ) ≃ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT [ start_ARG start_ROW start_CELL 0.50 + 0.77 italic_i end_CELL start_CELL - 0.30 - 0.08 italic_i end_CELL start_CELL 0.0 end_CELL end_ROW start_ROW start_CELL 0.09 - 0.14 italic_i end_CELL start_CELL 0.95 - 0.22 italic_i end_CELL start_CELL - 0.01 italic_i end_CELL end_ROW start_ROW start_CELL 0.0 end_CELL start_CELL 0.0 end_CELL start_CELL - 1.11 - 0.20 italic_i end_CELL end_ROW end_ARG ]

where (𝔊)=0.654𝔊0.654\mathcal{F}\circ\mathcal{M}(\mathfrak{G})=0.654caligraphic_F ∘ caligraphic_M ( fraktur_G ) = 0.654. For the case of the Mollifier curve 𝔐𝔐\mathfrak{M}fraktur_M with σ=4.15𝜎4.15\sigma=4.15italic_σ = 4.15, we have

(𝔐)ϕ[0.78+0.62i0.070.04i0.00.080.02i0.930.35i0.00.00.00.100.08i]subscriptsimilar-to-or-equalsitalic-ϕ𝔐matrix0.780.62𝑖0.070.04𝑖0.00.080.02𝑖0.930.35𝑖0.00.00.00.100.08𝑖\mathcal{M}(\mathfrak{M})\simeq_{\phi}\begin{bmatrix}0.78+0.62i&-0.07-0.04i&0.%0\\0.08-0.02i&0.93-0.35i&0.0\\0.0&0.0&-0.10-0.08i\\\end{bmatrix}caligraphic_M ( fraktur_M ) ≃ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT [ start_ARG start_ROW start_CELL 0.78 + 0.62 italic_i end_CELL start_CELL - 0.07 - 0.04 italic_i end_CELL start_CELL 0.0 end_CELL end_ROW start_ROW start_CELL 0.08 - 0.02 italic_i end_CELL start_CELL 0.93 - 0.35 italic_i end_CELL start_CELL 0.0 end_CELL end_ROW start_ROW start_CELL 0.0 end_CELL start_CELL 0.0 end_CELL start_CELL - 0.10 - 0.08 italic_i end_CELL end_ROW end_ARG ]

with (𝔐)=0.411𝔐0.411\mathcal{F}\circ\mathcal{M}(\mathfrak{M})=0.411caligraphic_F ∘ caligraphic_M ( fraktur_M ) = 0.411. We can thus conclusively state that, with these parameters, the mollifier curve both induces a lesser non-computational transition along with achieving a gate closer to the CZ𝐶𝑍CZitalic_C italic_Z, its 𝒩𝒩\mathcal{N}caligraphic_N-norm being smaller; this is a demonstration of the possibility that our non-simulative optimization is exactly mappable, in some coherent sense, to a quantum mechanical simulation. In this light, we conclude this work by proposing a question for future consideration.

Proposition Given our definitions for ,𝒩:𝒩\mathcal{F}\circ\mathcal{M},\|\cdot\|_{\mathcal{N}}:\mathcal{N}\to\mathbbm{R}caligraphic_F ∘ caligraphic_M , ∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT : caligraphic_N → blackboard_R, let 𝒩Q=(𝒩,Q)subscript𝒩𝑄𝒩subscript𝑄\mathcal{N}_{Q}=(\mathcal{N},\leq_{Q})caligraphic_N start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT = ( caligraphic_N , ≤ start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT ) and 𝒩R=(𝒩,R)subscript𝒩𝑅𝒩subscript𝑅\mathcal{N}_{R}=(\mathcal{N},\leq_{R})caligraphic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = ( caligraphic_N , ≤ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) be totally ordered sets with Q=q1[]\leq_{Q}=q^{-1}[\leq_{\mathbbm{R}}]≤ start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT = italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ ≤ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ] and R=r1[]\leq_{R}=r^{-1}[\leq_{\mathbbm{R}}]≤ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = italic_r start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ ≤ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ] where q=()×()𝑞q=(\mathcal{F}\circ\mathcal{M})\times(\mathcal{F}\circ\mathcal{M})italic_q = ( caligraphic_F ∘ caligraphic_M ) × ( caligraphic_F ∘ caligraphic_M ), r=𝒩×𝒩r=\|\cdot\|_{\mathcal{N}}\times\|\cdot\|_{\mathcal{N}}italic_r = ∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT × ∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT (where we have used the standard Cartesian product of functions), and subscript\leq_{\mathbbm{R}}≤ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT is the standard ordering of the real numbers. Then the identity map,

1𝒩:𝒩R𝒩Q,φφ:subscript1𝒩formulae-sequencesubscript𝒩𝑅subscript𝒩𝑄maps-to𝜑𝜑\begin{split}1_{\mathcal{N}}:\mathcal{N}_{R}&\to\mathcal{N}_{Q},\\\varphi&\mapsto\varphi\end{split}start_ROW start_CELL 1 start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT : caligraphic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_CELL start_CELL → caligraphic_N start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL italic_φ end_CELL start_CELL ↦ italic_φ end_CELL end_ROW(23)

is an order isomorphism.

Here, 𝒩Qsubscript𝒩𝑄\mathcal{N}_{Q}caligraphic_N start_POSTSUBSCRIPT italic_Q end_POSTSUBSCRIPT and 𝒩Rsubscript𝒩𝑅\mathcal{N}_{R}caligraphic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT represent the set of trajectories ordered by the quantum mechanical fidelity and the norm constructed in this work, respectively. Thus if the identity between them preserves ordering, performing a quantum mechanical simulation to compare trajectories is never necessary, as one can simply apply 𝒩\|\cdot\|_{\mathcal{N}}∥ ⋅ ∥ start_POSTSUBSCRIPT caligraphic_N end_POSTSUBSCRIPT.

VII Conclusion

VII.1 Summary

In this work, we have addressed the issue of choosing flux trajectories to adiabatically implement a CZ gate in two flux-tunable transmon qubits by introducing a novel method with which one can test and optimize trajectory families. After a brief but rigorous review of this adiabatic implementation, we motivate, through heavy consideration of the non-computational subspace, the definition of a functional norm which places an order relation of diabaticity on the space of possible trajectories, and subsequently apply the technique of constrained variation to arrive at yet another measure for adjustment. After providing examples which justify intuition about the effects of certain trajectories showing the coherence of this model, we simulate implementation on a quantum processor demonstrating success of the non-simulative approach outlined here.

The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons (5)

VII.2 Future Work

As discussed, there is much room to expand on our methods for optimizing for adiabaticity without simulation. Foremost, different curves may be considered of course, as those presented here are idealized for illustrative purposes; in reality, physical conditions may impose restrictions on flux trajectories, which can be handled by these methods. In addition, the fact that trajectories are optimized entirely mathematically (as opposed to numerically solving the Schrodinger equation or actual physical realization) is also a very helpful tool for design purposes, and can be generalized to different functional norms given different physical focuses. For example, here we placed higher importance in minimizing δ˙˙𝛿\dot{\delta}over˙ start_ARG italic_δ end_ARG along φ(t)𝜑𝑡\varphi(t)italic_φ ( italic_t ), which we have mathematically described by raising δ˙˙𝛿\dot{\delta}over˙ start_ARG italic_δ end_ARG to the second power in Eq. 13; these powers may be adjusted to influence the importance of physical conditions on solutions.

Though we have not done so here, it may be possible to construct a norm which gives rise to a perfect minimizer: that is, the equation given by constrained variation has a physically realizable and practical solution. Finding a norm with such a solution could make imperfection in adiabaticity, and thus gate error, arbitrarily reducible. Additionally, techniques using variational considerations on functional norms are applicable to a wide variety of cases in the control and design of qubits since time evolution given by the Schrodinger equation often involves trajectoral integration similar to that in this work, e.g. single-qubit pulse design and improvement to the DRAG scheme6.

Lastly, the most important and directly related future consideration is that proposed in Eq. 23, which states that it is entirely equivalent to use the methods discussed here to optimize flux trajectories as it is to do so simulatively, i.e. the assertion that a trajectory is more adiabatic than another under the 𝒩𝒩\mathcal{N}caligraphic_N-norm is equivalent to its performing more closely to the ideal CZ𝐶𝑍CZitalic_C italic_Z under a quantum mechanical simulation. This is a highly advantageous statement, if true, from a purely optimization-based standpoint. In conjunction with a redefinition of the 𝒩𝒩\mathcal{N}caligraphic_N-norm, in the ideal case these could lead to the determination of the singular best possible trajectory without need for any simulation.

VII.3 Acknowledgements

We would like to thank V. Narasimhachar for mentorship, discussion, and general research guidance, along with A. Ying for editing, research management, and discussion.

VII.4 Data Availability

The data and code used to generate figures in this work is available upon request from the authors.

References

  • NielsonandChuang [2010]M.A.NielsonandI.L.Chuang,Quantum Computation andQuantum Information Theory: 10th Anniversary Edition(Cambridge University Press,2010).
  • Preskill [2021]J.Preskill,Quantum computing 40 yearslater (2021),arXiv:2106.10522 [quant-ph] .
  • Bacciagaluppi [2020]G.Bacciagaluppi,The Role ofDecoherence in Quantum Mechanics,inThe Stanford Encyclopedia of Philosophy,edited byE.N.Zalta(Metaphysics Research Lab, Stanford University,2020)Fall 2020ed.
  • Sakietal. [2019]A.A.Saki, M.Alam,andS.Ghosh,Study of decoherence in quantum computers: Acircuit-design perspective (2019),arXiv:1904.04323 [cs.ET] .
  • Roffe [2019]J.Roffe,Quantum error correction:an introductory guide,Contemporary Physics60,226–245 (2019).
  • Krantzetal. [2019]P.Krantz, M.Kjaergaard,F.Yan, T.P.Orlando, S.Gustavsson,andW.D.Oliver,A quantum engineer’s guide to superconducting qubits,Applied Physics Reviews6,021318 (2019).
  • Strauchetal. [2003]F.W.Strauch, P.R.Johnson, A.J.Dragt,C.J.Lobb, J.R.Anderson,andF.C.Wellstood,Quantum logic gates for coupled superconductingphase qubits,Physical ReviewLetters91,10.1103/physrevlett.91.167005 (2003).
  • DiCarloetal. [2009]L.DiCarlo, J.M.Chow,J.M.Gambetta, L.S.Bishop, B.R.Johnson, D.I.Schuster, J.Majer, A.Blais, L.Frunzio, S.M.Girvin,andetal.,Demonstration of two-qubit algorithmswith a superconducting quantum processor,Nature460,240–244 (2009).
  • MartinisandGeller [2014]J.M.MartinisandM.R.Geller,Fast adiabatic qubit gatesusing only σzsubscript𝜎𝑧\sigma_{z}italic_σ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT control,Physical Review A90,10.1103/physreva.90.022307(2014).
  • McKayetal. [2016]D.C.McKay, S.Filipp,A.Mezzacapo, E.Magesan, J.M.Chow,andJ.M.Gambetta,Universal gate for fixed-frequency qubits via a tunablebus,Physical Review Applied6,10.1103/physrevapplied.6.064007 (2016).
  • McKayetal. [2017]D.C.McKay, C.J.Wood,S.Sheldon, J.M.Chow,andJ.M.Gambetta,Efficient z gates for quantum computing,Physical Review A96,10.1103/physreva.96.022330 (2017).
  • BertlmannandKrammer [2008]R.A.BertlmannandP.Krammer,Bloch vectors forqudits,Journal of Physics A: Mathematical andTheoretical41,235303(2008).
  • Majeretal. [2007]J.Majer, J.M.Chow,J.M.Gambetta, J.Koch, B.R.Johnson, J.A.Schreier, L.Frunzio, D.I.Schuster, A.A.Houck, A.Wallraff,andetal.,Coupling superconducting qubits via a cavitybus,Nature449,443–447 (2007).
  • Mostafazadeh [1997]A.Mostafazadeh,Quantum adiabaticapproximation and the geometric phase,Physical Review A55,1653–1664 (1997).
  • Sakurai [1999]J.J.Sakurai,Advanced quantummechanics(Addison-Wesley,1999).
  • Gelfand [2000]I.M.Gelfand,Calculus ofvariations(Dover Publications,Mineola, N.Y,2000).
  • Horn [1985]R.Horn,Matrix analysis(Cambridge University Press,Cambridge Cambridgeshire New York,1985).
The Optimization of Flux Trajectories for the Adiabatic Controlled-Z Gate on Split-Tunable Transmons (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Manual Maggio

Last Updated:

Views: 5617

Rating: 4.9 / 5 (69 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Manual Maggio

Birthday: 1998-01-20

Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

Phone: +577037762465

Job: Product Hospitality Supervisor

Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.